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This paper presents a general method for simulating the effect
of chemical exchange on MAS NMR spectra of solid samples. The
complication in MAS spectra is that the Hamiltonian itself is
time-dependent, due to the spinning of the sample. The approach
taken in this work is to use Floquet theory to convert the problem
into a time-independent form, and then use established methods
(used in liquid NMR simulations) to calculate the lineshape. Flo-
quet theory has been admired for its elegance, but criticized for its
computational inefficiencies. This is because it removes the time
dependence of the system by expanding the problem in a Fourier-
like series. This makes a relatively small, time-dependent calcu-
lation into a much larger time-independent one. Typically, we use
twice as many Floquet blocks as there are spinning sidebands, so
the increase in size is substantial. The problem that this creates
stems from the fact that the usual Householder methods for
diagonalizing a matrix scale as the cube of the size of the matrix.
This would make a Floquet calculation prohibitively long. How-
ever, the Floquet matrix is inherently sparse, so sparse matrix
methods can produce substantial computational savings. Also,
fully diagonalizing a matrix is expensive, but converting the ma-
trix to a tridiagonal form (using iterative Lanczos methods) is
much cheaper. The use of the Lanczos methods makes the Floquet
calculations feasible as a general method for systems of more than
one spin. We show how to set up the full matrix describing
chemical exchange in a spinning sample, but the details of how the
Lanczos methods work are not included—they are described else-
where. We then validate the theory by simulating the MAS spectra
of dimethyl sulfone both with natural abundance “*C and with
methyl groups labeled with *C. The latter system has both dipolar
and chemical shielding anisotropy terms contributing to the
spectrum. © 2000 Academic Press
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INTRODUCTION

effects of chemical exchange on the patterns of spinning sids
bands observed in CP/MAS spectra of complex spin system
This is because the Hamiltonian is time-dependent, and tt
spectrum is relatively complicated to calculate (compared t
liquids). For simple solid systemgl)( exchange effects are
often treated in the same way as liquid spectra, using th
standard Kubo and Tomit®) or Gutowsky and Holm formal-
ism (6). To provide a full and general description, it is neces-
sary to combine the rigorous treatment of liquids with the
complexities of the MAS experiment.

In this work we use Floquet theory{17 to convert the
time-dependent MAS problem into a time-independent (bu
much larger) description. This is not a new approaks),(but
it has been hampered by the size of the matrices generate
However, the Floquet matrices are inherently sparse. As suc
modern sparse matrix methods reduce the numerical difficu
ties dramatically. We use the dual Lanczos metHdi-24 in
Wassam’s formulation2b, 29 to tridiagonalize the resulting
matrices. For large matrices, this is much more efficient tha
the usual Householder metha2i7j. The general formalism is
developed and applied to the simulation of the MAS NMR
spectra of doubly*C-labeled dimethyl sulfone.

Floquet theory was introduced to spectroscopic problems b
Shirley 28), who applied this theory to compute the propaga-
tor corresponding to a time-dependent non-self-commutin
Hamiltonian. This is achieved by changing to a Fourier-spir
space, where the Hamiltonian is time-independent, but infinit
in dimension. Using similar methods, Vega described multiple
guantum effects in double-frequency pulsed NMR experiment
on spin-1/2 and 1 system24-3]). Later Zax and Vega used
Floquet methods to design broadband puls¥s, 83. Vega
also applied Floquet theory to compute sideband patterns
rotating solids. This led to expressions for sideband intensitie
that were similar to those by Herzfeld and Berga4)(and

The use of cross-polarization (CP) and magic-angle spinnifgaricq and Waugh 35). For multispin systems, numerical
(MAS) in obtaining the NMR spectra of solid samples is welhethods are required. Based on a perturbation method pr
known (1). The lineshape changes in the NMR spectra ofliquigosed by Maricq 6), spectra of coupled spin pairs were
samples, due to chemical exchange, are also very famil@mputed to model rotational resonand@<15, 17, 3y and
(2, 3). However, there are relatively few rigorous studies of theepor dephasing curvetZ, 3§. Schmidt and Vega applied

' To whom correspondence should be addressed.

Floquet theory to uncoupled exchange in rotating solids usin
the Bloch—McConnell approacig, 39, 40. In this case, only
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numerical diagonalization was possible for the general soliwo sites will evolve independently under the Liouvilliabhs

tion. However, in both the slow and the fast exchange regimasdL ,. The chemical exchange termis ¢ represents coher

it was possible to derive eigenvalues and diagonalization nexce leaving site 1 for site 2) couple the two sites together. W

trices using perturbation theory along with the solutions to tlian combine the Liouvillians and the exchange matrices int

static one-spin casel®). one bhig matrix, and we can write Eq. [2] in the composite spac
General principles of Floquet theory, as applied to NMRyf all the exchanging sites as in

have been discussed in several papérd ). The Hamiltonian

(or in our case, the Liouvillian) has a periodic time depen- 9

dence, due to the magic-angle spinning. The Floquet approach prl (—iL — K)p. [3]

expands the evolving spin state into something resembling

Fourier components at multiples of the spinning speed. The ) ) ) ) )

time evolution of this collection of component spin states, he time-domain solution to Eq. [3] can be written as in the

treated as a single vector, is governed binee-independent following equation, since it is a first-order set of equations:

effective Hamiltonian (or Liouvillian). In principle, there is an

infinite number of components, but in practice the number is p(t) = exd (=iL — K)t]p(0). [4]

often truncated to roughly twice the number of spinning side-

pands with significant inteqsity. Thi; tur.ns a relatively Sma"raking the Fourier transform of [4] gives us the frequency-

tlm_e—dependent_ problem into a tlme—lndgpendent problegdmain solution, as in

which has matrices that may be 30 to 40 times larger.

p— H 1 _ -1
CHEMICAL EXCHANGE p(v) = (2mivl —iL — K) peg 5]

Chemical exchange affects the NMR spectrum, since thewhich 1 represents the unit matrix, represents frequency,
magnetic environment of a nucleus is changed by the excharmdel p., is the result of applying a hardr/2 pulse to the
(2, 3. A single transition in one site will have its frequencyequilibrium density matrix.
changed, and may even be split among several transitions ifhese equations give the density matrix as a function c
the other site. Because exchange involves an evolution of gigher time or frequency. The observable spectrum is just th
site populations and coherences, which are combinationstifce of the density matrix with the total spin operator, since
density matrix elements, a density matrix description is needéidis the total x magnetization that is observed. This trace
The density matrix is conveniently treated in Liouville space,2ecomes a simple dot product in Liouville space, so the spe;
vector space in which the density matrix appears as a vectarm is given by
(41-43. This vector can be regarded as a list of all possible
observables of the system. Its time evolution is governed by the spectrum= 1, - p(v)

Liouville—~von Neumann equation, . .
=l (2mivl —iL — K)flpeq. [6]

d .

P~ —iLp, (1] There are several ways to use these equations to calculats

spectrum. In the time domain, we could calculate an FID usin

. N Lo [4] and then Fourier transform the FID to obtain a spectrum. It

whereL is the Liouville superoperator (or Liouvillian), ob- . g .
the frequency domain, we could perform the matrix inversior

tained from the commutator with the Hamiltoniad4(45. : éG] for each value of and trace the spectrum point by point.

Superoperators are represented as simple matrices in Liouv_il e standard way of doing this calculation, however, is to firs

space. . : o X !

. . diagonalize the matrix-(iL — K). In this representation, the

The effects of chemical exchange and relaxation are als%1 ?rix inversion in [6] _((as a fur?ction of) isptrivial and the
represented as matrices, which add a dissipative term to ([Fe '

time evolution of the density matrix. The Redfield matrix is the|agonal|zat|on need or]ly be done ond@)( . .
L . : . For large systems, this standard solution is not feasible. Tt
description of relaxation, and exchange is described by a

Kubo—Sack-tvpe matrix. Exchanae couples the sites. so focomputational effort to diagonalize a matrix, using House:
yp ’ 9 P ' Ewglder methods, scales as the cube of the size of the matt

two-site ex_change, the equation of motion of the two densi ¥7). For a system of spin-1/2 nuclei, this means that adding
matrices will have the form S . .
spin increases the calculation time by roughly a factor of 6:
) (since the size of the Liouville space goes up by a factor of 4)
9 <P1> _ ("'—1 —Ke Ky )(401)_ (2] nthe time domain, this problem can be avoided by explicitly
ot \ P2 K1z —ILz = Ko/ \ p2 propagating the superoperateriL — K using Chebyshev
evolution and sparse matrix representatioAg).( There are
In this equation, it is clear that in the absence of exchange, ttensiderable overheads in this calculation, but for larger spi
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systems, the direct evolution is much more efficient. Chebir the frame of reference of the rotor. A spin Hamiltonian is
shev evolution is an excellent methodi8 when there is no just the sum of 3x 3 quadratic forms, such &'l or 1 'DS,
dissipation. The effects of chemical exchange are then incarhereB is the magnetic field, andS are spin operatorsr is
porated via a split-operator method, in which the evolution aride chemical shielding tensor, aBdis the dipolar tensor. The
exchange are alternately propagated for short periods. ThEn operators are the usual I,, andl, operators. Ifx is the
approach is useful when the experiment involves some tiraagle of rotation about theaxis, then the effect of this rotation
evolution, as in a pulse sequence, but it is not necessary for timethe spin operators is given IR(a)l, whereR is given in
calculation of the simple spectrurg4). The Lanczos methods
are better for simple spectrum calculation. .
In the frequency-domain method, convertingl. — K to a cosa —sina 0

diagonal matrix is generally expensive, but converting it to a R(a) = | sina  cosa 0
tridiagonal form can be much cheaper. The linear equations 0 0 1
derived from the tridiagonal matrix can then be solved by the .

; . i 0 0O 1/2 /2 O
relatively efficient LU decompositionl@). The dual Lanczos . .

) . . ) . o =({0 O O] +¢e¢ —i/2 1/2 O
method (9) is an iterative technique for tridiagonalization (0 0 1) ( 0 0 0)
which scales much more gentlg4) than the cube of the size
of the matrix (between first and second orders). Lanczos meth- 1/2 —il2 0
ods are based on repeated applications of the matrix to some +e '“( ir2 1/2 0)_ [7]
starting vector, which can be done very efficiently for sparse 0 0 O
matrices. These repeated applications generate a series of vec-
tors, which span a space called the Krylov subspa& The ) o )
Lanczos algorithm makes these vectors orthonormal in a r]u-lf_ M is a tensor in this frame, then the effect of the rotatior
merically stable way, and eventually produces a basis for tifediven by
whole space, called the Lanczos representation. In this repre-
sentation, the tridiagonal form ofiL — K is used in Eq. [6].
This equation can be solved for each frequency and the spec-
trum can be traced out. There are considerable overheads, but
for large systems, the scaling with respect to matrix size cf\ye substitute [7] into [8], we get a five-term Fourier series
approach linear. _Deta|ls of the |mpIeme.ntat|on of Lanczqg, M (), given in
methods to chemical exchange are described elsewBdye (
The Lanczos method is based on a recursion formula, which

M (a) = R(a)M (0)R (). [8]

generates a set of vectors, describing the Lanczos representa- 2
tion, and a tridiagonal form of the matrix in question. Each M(a) = > M Dgi [9]
iteration involves a sparse matrix—vector multiply, which =2

scales with the order of the matri®,. Therefore, the Lanczos

tridiagonalization process scales@sx N, whereN, is the

number of iterations required for convergence. The diresthere the superscript j denotes the Fourier component. The
spectrum computation described above requies< N, op- Fourier components can be written explicitly in terms of the
erations, whereN, is the number of frequency points in thematrix elements oM,

spectrum. This is the result of the LU decomposition scaling

linearly with the matrix order for a tridiagonal system. For

small systems the spectrum calculation is expected to dominate (M1 + Myy) 0 0

the computation time sindd, is much larger thai®, andN, 2

is approximately equal t®. For large systems, the spectrumis M © = 0 (My1; + My 0 [10]

crowded andN, can be much smaller tha®, which is an 2

effect called saturation. In this case, the scaling will be approx- 0 0 Mss

imately linear. For intermediate sized systems the scaling will )

be O? sinceN, is approximately equal t®. 0 0 (M3; * iM3))

2
CHEMICAL EXCHANGE IN CP/MAS SPECTRA M ED = 0 0 (MBZ";iMal)
In order to apply the approach of the previous section, we (M3 = iM3y) (Mg, ¥ iM3y)
must convert the time-dependent Liouvillian for the spinning 2 2 0

sample into something that is time-independent. We start this
process by looking at the time dependence of the Hamiltonian [11]
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(My; — My, £ 2iMy,) Sincep(t) satisfies the Liouville-von Neumann equation, the
4 propagatorU, must satisfy the matrix equation
M©E2 =| (FiM; * iM,, + 2Myy)
4
0 J i
It U(t) = —iL(1)U(1). [16]
(FiMy; £ iM,, + 2My,) 0
4
X (=M + My, F 2iMy,) oI [12] If we substitute [13] and [15] into [16], we get
4
0 0

©

2 %
E %(U(k)(t)eikmt) = —j E E L(j)U(k)(t)ei(j+k)mt.

Note that the symmetry & has been used in these equations. ; =
=—00 j=- =—00

Equation [9] gives us the Fourier expansion of the Hamil-

tonian—the fact that there are five terms arises from the sec- [17]
ond-rank nature of the tensors. From the Hamiltonian, we can
calculate the propagators of the density matrix. Taking the derivative of the product on the left, and rearrang

In Floquet theory, the propagator is also expanded injQy gives the following equation, in whidy, is the Kronecker
something resembling a Fourier series. The series is infinifgyta andl is the unit matrix:

but it can be truncated to leave a much larger, but still finite,
propagator. Because of the five terms in [9], the matrix repre-
sentation of the propagator has a pentadiagonal structure—the
other off-diagonal terms are zero. The Floquet representation S (3 U(k)(t)) gikot
produces, therefore, a large, sparse matrix. at

In order to calculate the propagator for a system with chem-

K=—o0

ical exchange, we work exclusively with the Liouvillian, the z 2 _ o
commutator with the Hamiltonian. Because the Hamiltonian =—i 2 2 (LY + kedl)UW ek [18]
has a five-term Fourier expansion in terms of rotation about the k=—o j==2

rotor axis, so will the LiouvillianL(t). This is expressed in

The k index on the left is arbitrary, so Eq. [18] can be rewritter

2 as

L(t)= > LWele [13]

j=-2

o I o [0 _
where the angle of rotation is the product of the spinning speed, > ( U <k>(t)> glket
w, and time, t. e V01

The density matrix, as a function of time, is given by some

unknown propagatot, as in 2

=—i > > LY+ (k= wdpl)Uk(pek. [19]
k=—o j=-2

p(t) = U(t)p(0). [14]

The propagator is more complicated than in Eq. [4], sinds The solution to this equation is unique, so it is satisfied by th
itself ime-dependent. However, we can expand the propaga#étutions of the following equation, for all values of k:
in a series as

%U‘k)(t) =—i > (L4 (k= wde)U*D(1). [20]

j=—2

%

Ui = > U®(peke [15]

k=—o

Note that this is not a Fourier series, since the components dfilve solve these equations for the Floquet components of th
carry some time dependence. We must now solve for thabpagator, they can be substituted into [15] and [14], to give
dependence. the density matrix as a function of timéqQ).
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Let us write all the propagatorsl® as an infinite vectoJ, Note that at t= 0, no propagation has occurred. This mean:s
as in that in Eq. [21],U(t) is the unit operator, and all other?(t)
are zero at & 0. If we divide exp-ilLt) into blocks, as in Eq.
[23], then any individual propagatot)(t), at time t is the

: (j, 0) block of exp(iLt), as given by
U(+2)

ey UY(t) = [exp(—iLt)];o. [25]
um=| U@ | [21]
y-o We now have the description of the density matrix evolu-
tion. The elements of the matrik,, are constructed from the

(-2
U . individual site Liouvillians, with the exchange rate contribut-

ing only to the diagonal elements. These are then assembl
into the form of Eqg. [23], and the exponential is calculated

Equation [20] can then be written as From this exponential, we can extract each propagator, as
[25]. If we substitute these into [14] and [15], we get

9 .
5 U0 = —iLu(, [22]

p(t) = X [exp(—iLt)];e"p(0). [26]
wherelL is given by j=—e

We detect the totak magnetization|,, and in Liouville
space, this detection is represented by the dot productath
the density matrix (which is a vector in Liouville space). The
detected signal in the time domain is given by

LO+20 LGV L2
L (-1) L © 4 o L (+1)

L=| - L2 LD O
’ 0 L2 LD
0 0 L2 . . : i
- . . signal= >, |- [exp(—iLt)],e"“p(0). [27]
j:—oc
0' 0' " We can also Fourier transform this equation to get the spectru
L (+2 0 as a function of frequency;, as in
% L(+1) L(+2) ) 23
LO— o L&D [ ] ” 1
L(*l) |_(0)_2 .
! T2w spectrum= >, |, (2ml+jel—1) jopeq. [28]

j=—c

This is a general equation. If we are including the effects of These two equations give the spectrum of a spinning sing|
chemical exchange, then each of theterms is composite, crystal, in either the time or the frequency domain. In order tc
made up from the individual sites, as in Eq. [2] and Eq. [3]. Thealculate the spectrum of a powder, these expressions must
off-diagonal elementt " andL ""? are equal to the com averaged over all the possible orientations of a single crystz
posite ofL"""? andL “""? in Eq. [13]. It is important to note j.e., over all the Euler angles, B, andy. Explicit averaging
that the time dependence of these matrix elements comes frever 8 and vy is always necessary. The average owerthe
the mechanical rotation, which affects the spatial parts of tAggle around the rotor axis, can be done analytically, and
interaction. However, since the exchange matikix,is time- further simplifies Egs. [27] and [28].

independent it contributes only kd”. Chemical exchange thus

only affects the diagonal elementslafwhich have the form of POWDER AVERAGING

Eq. [2]. We can therefore construct the whole mattixfrom

the Liouvillians of the individual sites and the exchange ma- Averaging over all orientations is Simp]e, but the Straight_

trix, K. _ _ forward method is very inefficient. Since this process is s
We solve Eq. [22] in the same way as any set of first-ordghportant in magnetic resonance, several good algoritds (
differential equations, to give 53) have been developed. These methods are designed

average over the two Euler angl@sand+y. Averaging over,
U(t) = exp(—iLt)U(0). [24] the angle around the rotor axis, is quite simple, since it i
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equivalent to a phase offset in the sample spinning. This
average also brings an important simplificatié&md)(
To show how to average around the rotor axis, we make the 31
a dependence explicit. This rotation is simply a phase effect, so
that equation [13] becomes

2 g
L) = X LVelel [29] € 1
j=-2
. R 0 -
When we carry this through the derivation, each ofltherms o Household
in Eq. [23] is modified by a phase factor as in ouseholder
1] s Lanczos
LY — LOgle, [30]
15 2.0 25 3.0 35
This is a unitary transformation of the full matrix, and it is Log,[Order]
described by a diagonal matI.’IW. Because .'t IS unitary, it g g A comparison between Lanczos and Householder calculations ¢
propagates through any function bf f(L), as in spinning sideband spectra, showing the scaling of the CPU time with respe
to the matrix order. The lag({CPU) is plotted as a function of lggOrder).
f(W—lLW) _ W—lf(L)W_ [31] The slope corresponding to the Householder data (open circles) was 3.2 wh

that of the Lanczos data (filled circles) was 2.1.

Therefore, the (j, 0) blocks of the matrices in Eq. [27] or [28]
are multiplied by & when the sample is rotated through a
anglea about the rotor axis.

The powder average over the anglpist averages the signal

or the spectrum over all values Of. the angle. This means thak/'('i‘lves a single diagonalization &f Tracing out the spectrum
Egs. [27] and [28], all the terms with O will average to zero. as a function ofv is then quite efficient. Using standard

The equations for the time-domain signal, or the frequencM’ouseholder methods, the computational effort to diagonaliz

domai_n spectrum fgr a powder sample, then become partaufnatrix scales as the cube of the size of the matrix. For th
larly simple. Equation [27] becomes Eq. [32], and Eq. [2 umber of Floguet blocks needed in an MAS spectrum, thi

becomes Eq. [33]: scaling law becomes prohibitive very quickly.
As we noted before, the matrix to be diagonalized has

Lome thought. Inverting the matrix for each frequencyn the
spectrum is clearly a waste of computer time. The standat
method, usually attributed to Gordon and McGinr§)( in-

signal= I, - [exp(—iLt)]oq0(0) [32]  pentadiagonal structure, and so is inherently sparse. Furthe
1 more, even though diagonalization is computationally inten
spectrum= [33] sive, reduction of the matrix to a tridiagonal form can be done

: - Peq
2mvl + jol — L a - :
i(2mvl + jo ) oo relatively quickly. The spectrum can then be calculated from:

) tridiagonal version ofL, using an LU method to solve the
These are very concise and neat formulae for the observakggaem of linear equations associated with Eq. [33]. The Lanc

in an MAS experiment. The whole matrix,, must still be ;o5 algorithm {9) provides an efficient way of calculating the
constructed, truncated to the appropriate number of F|°qlt'ﬁ8iagonal form of a large, sparse matrix.

blocks, and either its exponential or its inverse must be calcu-
lated. In practice, however, the full matrixdoes not have to
be calculated and stored as a whole, so the programming SCALING OF THE CALCULATION
considerations are eased. Each Floquet block has the dimen-
sion of the size of the density matrix, since it is a matrix The scaling of Lanczos was compared to Householder b
applied to the density matrix. However, due to the powdéncreasing the Floquet dimensid;, of a sample system. The
averaging, only the central & 0) block of the inverse (aver- spectral range was kept constant; consequently the rotor fr
aged over the other anglgd,andvy) is needed to calculate thequency was inverse proportionately decreased. The logarith
spectrum. of the CPU time was plotted (Fig. 1) as a function of the
logarithm of the matrix orderQ, which in the case wasN-.
SPECTRUM CALCULATION For Householder implementation, the slope of the line was 3.
which is close to the asymptotic limit 3. The Lanczos methoc
Equation [33] is what we need to calculate the spectrumad a slope of 2.1; however, it had significant overhead due 1
However, using this in a numerically efficient manner requirdhe spectrum evaluation. As in the previous study with liquids
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(24), saturation behavior was observed for both increased line
broadening or with chemical exchange.

The CP/MAS spectra of DMS and’C,]JDMS were simu 348K
lated using the EisXSS and LanXSS programs. These were
written in FORTRAN77, where EisXSS uses Householder and
LanXSS uses Lanczos tridiagonalization. Computations were
performed on an SGI Octane Dual R10000 at 250 MHz.
Programs were compiled with a MIPS 7.21 FORTRAN com-
piler, with 64-bit word size, running in an lIrix 6.5.2 environ-
ment.

All simulated spectra contained 4096 points, with an
8000-Hz spectral width. Powder averages, using an approach
similar to that of Aldermaret al. (53), were done over 952
points, assuming no symmetry. The sphere was divided into 323k
guadrants where one polar angleanged between 0 and 180°
and the remaining polar angké varied from 0 to 90°. The
guadrant was divided intorRequally spaced bands parallel to
the equator. Each band is divided into curvilinear squares such
that squares from different bands subtend approximately the
same solid angle. The same pattern is repeated in reverse order
for the bottom half of the quadrant. The actual angles used
correspond to the center of these squares. The weight for each 2000 0 2000
orientation is equal to the solid angle subtended by the asso- Frequency (Hz)
ciated square. The linewidths were set to 13 and 75 Hz for
DMS and [°C,]DMS, respectively. Rotor speeds ranged from FIG.2. *C CP/MAS spectra of unlabeled dimethyl sulfone for a series of
540 to 580 Hz for the natural abundance sample, and from 32 peratures from 295 to 348 K. The spectra were taken a_t 50 MHz, with
0 400 Hz for the labeled material. The number of Floguer r frequency of between 540 and 580 Hz controlled to within 2 to 5 Hz.
blocks was 40 for all simulations.

The DMS spectra were simulated as a one-spin two-siee substantially avoided by exploiting the inherent sparsity
mutual exchange, and the’C,]JDMS spectra were simulated the Floguet matrices. The Lanczos method for tridiagonalizin
as a two-site two-spin nonmutual exchange. Both calculatiogsmatrix (as opposed to the standard Householder techniqu
required matrices of the same size. Tfi@,*C isotopomer is shows much better scaling (between linear and quadratic) :
a one-spin two-site nonmutual exchange problem, whereas the size of the matrix increases.

C,C case is a two-spin mutual problem. Spectra were sim The method was tested on CP/MAS spectra of dodty

ulated (Figs. 3 and 5) for a variety of parameters and companggeled dimethyl sulfone. In this case, there were both CSA an
visually with the experimental spectra (Figs. 2 and 4). Fingipolar interactions, as well as the exchange between the site
values were as follows. The principal components of the chefxperimental spectra showed approximately 10 spinning sids
ical shift tensor were set at 18.6, 18.6, an87.3 ppm for both pands. These spectra were simulated using both Lanczos a
sites; their Euler angles were (0, 0, 0) and (0, 108°, 0). Thouseholder methods. The Lanczos calculation took approx

carbon—carbon internuclear distance of 29 nm, compared to@8tely 20 min on a modern UNIX workstation, and the House
nm in a crystal structuresf), gave a slightly better fit. EX- holder calculation took about 7 min.

change rates were 50, 800, 1700, and 55008 temperatures  These results establish that the method will work on mor
of 295, 333, 343, and 348 K, respectively. Experimental ar@mplex systems: quadrupolar nuclei, more spins, more inte
simulated spectra were compared visually. The EisXSS cal@ittions. The scaling of the Lanczos methods ensures that t
lations took 7 min while the LanXSS calculations took 20 mirgalculations will remain feasible for these important larger

systems.

11

CONCLUSIONS

EXPERIMENTAL
Floquet theory provides an excellent general way of describ-

ing the effect of dynamics on an MAS NMR spectrum. The Unlabeled dimethyl sulfone was purchased from Aldrich
small time-dependent problem is expanded in a Fourier-likthemicals and used without further purification. The knowr
series to become a much larger, time-independent proble®6), doubly “*C-labeled dimethyl sulfonelf was prepared
This time-independent problem can then be solved using wdlem [“*CJiodomethane by reaction with sodium sulfide- ac
established methods from high-resolution NMR system. Tlerding to the procedure of Tarbell and Weavei)( The
numerical disadvantages of increasing the size of the systessulting presumed dimethyl sulfide was distilled and oxidizec
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The CP/MAS spectra were acquired on a Bruker DSX-20(
spectrometer equipped with a wide-bore magnet of 4.7 T
leading to a proton frequency of 200 MHz and’@ frequency
of 50 MHz. The probe used was a standard Bruker 4-mn
double-tuned MAS probe. This probe requires the sample to &
packed in a zirconia cylinder of 4 mm diameter and 18 mn
length. The sample container is closed by a cap with turbine
like incisions at the outer rim. For magic-angle spinning, the
sample is cushioned on a gas stream (bearing) to reduce fri
tion, while a second gas stream blown at an angle over th
incisions in the cap drives the rotation. This system had bee
designed for fast spinning (2 to 16 kHz) and in the standar
setup, it was impossible to obtain stable low spinning rate
(180 to 800 Hz). Boron nitrate caps which are recommende
for variable-temperature studies were used and the turbine
were shaved off with a razor blade such that a fairly smootl
cone was left. This reduced the driving force sufficiently anc
the sample could be spun between 180 and 2 kHz.

Temperature control was achieved with a Bruker BVT-300(
unit. This unit regulates the current through a heater in th

2000 - 2000 bearing gas using a copper/constantan thermal coupler as
temperature sensor. The sensor is located close to the samy
Frequency (Hz) . .
also in the bearing gas stream.
FIG. 3. Simulations of the”C CP/MAS spectra of unlabeled dimethyl The proton 90° pulse length was 5.5 ms, the contact tim

sulfone for a series of temperatures from 295 to 348 K, using EisXSS. Specv\?és 2 ms. and the repetition time was 4 s. The number ¢
parameters are given in the text. ’ '

n w [ [

© N © B

] v w <
) %%%

without further purification using potassium permanganate fol-
lowing the procedure used by Malewski and Mitzinge8)(for
preparation of JHg]dimethyl sulfone. 248 K

Preparation of [°C,]Dimethyl Sulfone

A mixture of [°CJiodomethane (5 g, 35 mmol) and sodium
sulfide nonahydrate (4.6 g, 19 mmol) was heated at reflux with
stirring for 4 h, with an attached cold-finger condenser con- 333K
taining an ice-water mixture. The mixture was cooled and
distilled through a short path into a fresh flask which was
cooled in ice, and to which the cold-finger condenser was
attached. The cooled distillate was treated with potassium
permanganate (11.5 g) and water (25 mL). After the initial 323K
exothermic reaction had subsided, the mixture was heated to
reflux in an oil bath (90°C bath temperature) f8 h while
cooling of the cold-finger trap was maintained. The mixture
was cooled and stirred at room temperature overnight. The
water was removed by distillation, and the solid residue was 295 K
dried briefly in vacuo. The product was sublimed from this
black material giving white needles (50 mg, 5afol, 3%),
mp 106-107°C, 107-108°C for authentic, unlabeled sample
(AIdrich); 1H NMR (CDC|3, 200 MHZ)S 2.96 (d,lJ13c_H 138 3000 -2000 -1000 0 1000 2000 3000
Hz with sidebands due to the magnetic inequivalence of the Frequency (Hz)
two carbons);*C NMR (CDCl,, 50 MHz) & 42.67 (enriched .

. . . . FIG. 4. C CP/MAS spectra of doubl{’C-labeled dimethy! sulfone for a
Smglet)' A detailed anaIyS|s of the proton spectrum (Flg. 2) @gries of temperatures from 295 to 348 K. The spectra were taken at 50 MH

an AA’X;X; spin system revealedJucy = +137.6 Hz, witha rotor frequency of between 320 and 400 Hz controlled to within 2 to 5
*Juscw = +0.8 HZ," Juscsc = £9.5 Hz, and'Jyy = +0.9 Hz.  Hz.

i
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FIG. 5. Simulations of the’®*C CP/MAS spectra of doubly’C-labeled
dimethyl sulfone for a series of temperatures from 295 to 348 K, using EisXSS.
Spectral parameters are given in the text.

17

transients varied with each spectrum between 15,000 and 5%
in order to obtain similar signal-to-noise ratios (Figs. 3 and
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