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This paper presents a general method for simulating the effect
of chemical exchange on MAS NMR spectra of solid samples. The
complication in MAS spectra is that the Hamiltonian itself is
time-dependent, due to the spinning of the sample. The approach
taken in this work is to use Floquet theory to convert the problem
into a time-independent form, and then use established methods
(used in liquid NMR simulations) to calculate the lineshape. Flo-
quet theory has been admired for its elegance, but criticized for its
computational inefficiencies. This is because it removes the time
dependence of the system by expanding the problem in a Fourier-
like series. This makes a relatively small, time-dependent calcu-
lation into a much larger time-independent one. Typically, we use
twice as many Floquet blocks as there are spinning sidebands, so
the increase in size is substantial. The problem that this creates
stems from the fact that the usual Householder methods for
diagonalizing a matrix scale as the cube of the size of the matrix.
This would make a Floquet calculation prohibitively long. How-
ever, the Floquet matrix is inherently sparse, so sparse matrix
methods can produce substantial computational savings. Also,
fully diagonalizing a matrix is expensive, but converting the ma-
trix to a tridiagonal form (using iterative Lanczos methods) is
much cheaper. The use of the Lanczos methods makes the Floquet
calculations feasible as a general method for systems of more than
one spin. We show how to set up the full matrix describing
chemical exchange in a spinning sample, but the details of how the
Lanczos methods work are not included—they are described else-
where. We then validate the theory by simulating the MAS spectra
of dimethyl sulfone both with natural abundance 13C and with
methyl groups labeled with 13C. The latter system has both dipolar
nd chemical shielding anisotropy terms contributing to the
pectrum. © 2000 Academic Press

Key Words: chemical exchange; CP/MAS; Floquet theory; spin-
ning sidebands.

INTRODUCTION

The use of cross-polarization (CP) and magic-angle spin
(MAS) in obtaining the NMR spectra of solid samples is w
known (1). The lineshape changes in the NMR spectra of liq
samples, due to chemical exchange, are also very fam
(2, 3). However, there are relatively few rigorous studies of

1 To whom correspondence should be addressed.
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effects of chemical exchange on the patterns of spinning
bands observed in CP/MAS spectra of complex spin sys
This is because the Hamiltonian is time-dependent, an
spectrum is relatively complicated to calculate (compare
liquids). For simple solid systems (4), exchange effects a
often treated in the same way as liquid spectra, using
standard Kubo and Tomita (5) or Gutowsky and Holm forma
ism (6). To provide a full and general description, it is nec
sary to combine the rigorous treatment of liquids with
complexities of the MAS experiment.

In this work we use Floquet theory (7–17) to convert the
time-dependent MAS problem into a time-independent
much larger) description. This is not a new approach (18), but
it has been hampered by the size of the matrices gene
However, the Floquet matrices are inherently sparse. As
modern sparse matrix methods reduce the numerical dif
ties dramatically. We use the dual Lanczos method (19–24) in
Wassam’s formulation (25, 26) to tridiagonalize the resultin
matrices. For large matrices, this is much more efficient
the usual Householder method (27). The general formalism
developed and applied to the simulation of the MAS13C NMR
spectra of doubly13C-labeled dimethyl sulfone.

Floquet theory was introduced to spectroscopic problem
Shirley (28), who applied this theory to compute the propa
tor corresponding to a time-dependent non-self-comm
Hamiltonian. This is achieved by changing to a Fourier-
space, where the Hamiltonian is time-independent, but in
in dimension. Using similar methods, Vega described mult
quantum effects in double-frequency pulsed NMR experim
on spin-1/2 and 1 systems (29–31). Later Zax and Vega use

loquet methods to design broadband pulses (32, 33). Vega
lso applied Floquet theory to compute sideband patter
otating solids. This led to expressions for sideband inten
hat were similar to those by Herzfeld and Berger (34) and
aricq and Waugh (35). For multispin systems, numeric
ethods are required. Based on a perturbation method
osed by Maricq (36), spectra of coupled spin pairs we
omputed to model rotational resonance (13–15, 17, 37) and
EDOR dephasing curves (12, 38). Schmidt and Vega applie

Floquet theory to uncoupled exchange in rotating solids u
the Bloch–McConnell approach (18, 39, 40). In this case, onl
1090-7807/00 $35.00
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34 HAZENDONK ET AL.
numerical diagonalization was possible for the general
tion. However, in both the slow and the fast exchange reg
it was possible to derive eigenvalues and diagonalization
trices using perturbation theory along with the solutions to
static one-spin case (18).

General principles of Floquet theory, as applied to NM
have been discussed in several papers (7–17). The Hamiltonian
(or in our case, the Liouvillian) has a periodic time dep
dence, due to the magic-angle spinning. The Floquet app
expands the evolving spin state into something resem
Fourier components at multiples of the spinning speed.
time evolution of this collection of component spin sta
treated as a single vector, is governed by atime-independen
effective Hamiltonian (or Liouvillian). In principle, there is
infinite number of components, but in practice the numb
often truncated to roughly twice the number of spinning s
bands with significant intensity. This turns a relatively sm
time-dependent problem into a time-independent pro
which has matrices that may be 30 to 40 times larger.

CHEMICAL EXCHANGE

Chemical exchange affects the NMR spectrum, since
magnetic environment of a nucleus is changed by the exch
(2, 3). A single transition in one site will have its frequen
changed, and may even be split among several transitio
the other site. Because exchange involves an evolution o
site populations and coherences, which are combinatio
density matrix elements, a density matrix description is nee
The density matrix is conveniently treated in Liouville spac
vector space in which the density matrix appears as a v
(41–43). This vector can be regarded as a list of all poss
observables of the system. Its time evolution is governed b
Liouville–von Neumann equation,



t
r 5 2iL r, [1]

where L is the Liouville superoperator (or Liouvillian), o
tained from the commutator with the Hamiltonian (44, 45).
Superoperators are represented as simple matrices in Lio
space.

The effects of chemical exchange and relaxation are
represented as matrices, which add a dissipative term t
time evolution of the density matrix. The Redfield matrix is
description of relaxation, and exchange is described
Kubo–Sack-type matrix. Exchange couples the sites, so
two-site exchange, the equation of motion of the two den
matrices will have the form



t Sr1

r2
D 5 S2iL 1 2 K 12 K 21

K 12 2iL 2 2 K 21
DSr1

r2
D . [2]

In this equation, it is clear that in the absence of exchange
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two sites will evolve independently under the LiouvilliansL 1

and L 2. The chemical exchange terms (K 12 represents cohe-
ence leaving site 1 for site 2) couple the two sites together
can combine the Liouvillians and the exchange matrices
one big matrix, and we can write Eq. [2] in the composite s
of all the exchanging sites as in



t
r 5 ~2iL 2 K !r. [3]

The time-domain solution to Eq. [3] can be written as in
following equation, since it is a first-order set of equation

r~t! 5 exp@~2iL 2 K !t]r~0!. [4]

aking the Fourier transform of [4] gives us the frequen
omain solution, as in

r~n! 5 ~2pin1 2 iL 2 K ! 21req, [5]

in which 1 represents the unit matrix,n represents frequenc
and req is the result of applying a hardp/2 pulse to th
equilibrium density matrix.

These equations give the density matrix as a functio
either time or frequency. The observable spectrum is jus
trace of the density matrix with the totalI x spin operator, sinc
it is the total x magnetization that is observed. This tr
becomes a simple dot product in Liouville space, so the s
trum is given by

spectrum5 I x z r~n!

5 I x z ~2pin1 2 iL 2 K ! 21req. [6]

There are several ways to use these equations to calcu
spectrum. In the time domain, we could calculate an FID u
[4] and then Fourier transform the FID to obtain a spectrum
the frequency domain, we could perform the matrix inver
in [6] for each value ofn and trace the spectrum point by po
The standard way of doing this calculation, however, is to
diagonalize the matrix (2iL 2 K ). In this representation, th
matrix inversion in [6] (as a function ofn) is trivial, and the
diagonalization need only be done once (46).

For large systems, this standard solution is not feasible
omputational effort to diagonalize a matrix, using Hou
older methods, scales as the cube of the size of the m
27). For a system of spin-1/2 nuclei, this means that add
pin increases the calculation time by roughly a factor o
since the size of the Liouville space goes up by a factor o
n the time domain, this problem can be avoided by expli
ropagating the superoperator2iL 2 K using Chebyshe
volution and sparse matrix representations (47). There are
onsiderable overheads in this calculation, but for larger
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35FLOQUET THEORY OF EXCHANGE LINESHAPES IN CP/MAS
systems, the direct evolution is much more efficient. Ch
shev evolution is an excellent method (48) when there is n

issipation. The effects of chemical exchange are then i
orated via a split-operator method, in which the evolution
xchange are alternately propagated for short periods.
pproach is useful when the experiment involves some
volution, as in a pulse sequence, but it is not necessary f
alculation of the simple spectrum (24). The Lanczos method
re better for simple spectrum calculation.
In the frequency-domain method, converting2iL 2 K to a

iagonal matrix is generally expensive, but converting it
ridiagonal form can be much cheaper. The linear equa
erived from the tridiagonal matrix can then be solved by
elatively efficient LU decomposition (19). The dual Lanczo
ethod (19) is an iterative technique for tridiagonalizat
hich scales much more gently (24) than the cube of the si
f the matrix (between first and second orders). Lanczos m
ds are based on repeated applications of the matrix to
tarting vector, which can be done very efficiently for sp
atrices. These repeated applications generate a series

ors, which span a space called the Krylov subspace (19). The
anczos algorithm makes these vectors orthonormal in a
erically stable way, and eventually produces a basis fo
hole space, called the Lanczos representation. In this r
entation, the tridiagonal form of2iL 2 K is used in Eq. [6]
his equation can be solved for each frequency and the

rum can be traced out. There are considerable overhead
or large systems, the scaling with respect to matrix size
pproach linear. Details of the implementation of Lanc
ethods to chemical exchange are described elsewhere24).
The Lanczos method is based on a recursion formula, w

enerates a set of vectors, describing the Lanczos repre
ion, and a tridiagonal form of the matrix in question. E
teration involves a sparse matrix–vector multiply, wh
cales with the order of the matrix,O. Therefore, the Lanczo
ridiagonalization process scales asO 3 NL, whereNL is the
number of iterations required for convergence. The d
spectrum computation described above requiresNL 3 Nn op-
erations, whereNn is the number of frequency points in t
pectrum. This is the result of the LU decomposition sca
inearly with the matrix order for a tridiagonal system.
mall systems the spectrum calculation is expected to dom
he computation time sinceNn is much larger thanO, andNL

is approximately equal toO. For large systems, the spectrum
crowded andNL can be much smaller thanO, which is an
effect called saturation. In this case, the scaling will be app
imately linear. For intermediate sized systems the scaling
be O2 sinceNL is approximately equal toO.

CHEMICAL EXCHANGE IN CP/MAS SPECTRA

In order to apply the approach of the previous section
must convert the time-dependent Liouvillian for the spinn
sample into something that is time-independent. We star
process by looking at the time dependence of the Hamilto
y-
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in the frame of reference of the rotor. A spin Hamiltonia
just the sum of 33 3 quadratic forms, such asBTsI or I TDS,

hereB is the magnetic field,I andS are spin operators,s is
the chemical shielding tensor, andD is the dipolar tensor. Th
spin operators are the usualI x, I y, andI z operators. Ifa is the
angle of rotation about thez axis, then the effect of this rotatio
on the spin operators is given byR(a)I , whereR is given in

R~a! 5 Scosa 2sin a 0
sin a cosa 0

0 0 1
D

5 S0 0 0
0 0 0
0 0 1

D 1 eiaS 1/ 2 i/ 2 0
2i/ 2 1/ 2 0

0 0 0
D

1 e2iaS1/ 2 2i/ 2 0
i/ 2 1/ 2 0
0 0 0

D . [7]

If M is a tensor in this frame, then the effect of the rota
is given by

M ~a! 5 R~a!M ~0!R T~a!. [8]

If we substitute [7] into [8], we get a five-term Fourier se
for M (a), given in

M ~a! 5 O
j522

2

M ~ j!eija, [9]

where the superscript j denotes the Fourier component. T
Fourier components can be written explicitly in terms of
matrix elements ofM ,

M ~0! 5 1
~M11 1 M22!

2
0 0

0
~M11 1 M22!

2
0

0 0 M33

2 [10]

M ~61! 5 1
0 0

~M31 6 iM32!

2

0 0
~M32 7 iM31!

2
~M31 6 iM32!

2

~M32 7 iM31!

2
0

2
[11]
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36 HAZENDONK ET AL.
M ~62! 5 1
~M11 2 M22 6 2iM12!

4
~7iM11 6 iM22 1 2M12!

4
0

3

~7iM 11 6 iM22 1 2M12!

4
0

~2M11 1 M22 7 2iM12!

4
0

0 0
2 . [12]

Note that the symmetry ofM has been used in these equatio
Equation [9] gives us the Fourier expansion of the Ha
tonian—the fact that there are five terms arises from the
ond-rank nature of the tensors. From the Hamiltonian, we
calculate the propagators of the density matrix.

In Floquet theory, the propagator is also expanded
something resembling a Fourier series. The series is infi
but it can be truncated to leave a much larger, but still fi
propagator. Because of the five terms in [9], the matrix re
sentation of the propagator has a pentadiagonal structure
other off-diagonal terms are zero. The Floquet represent
produces, therefore, a large, sparse matrix.

In order to calculate the propagator for a system with ch
ical exchange, we work exclusively with the Liouvillian,
commutator with the Hamiltonian. Because the Hamilto
has a five-term Fourier expansion in terms of rotation abou
rotor axis, so will the Liouvillian,L (t). This is expressed in

L ~t! 5 O
j522

2

L ~ j!e ijvt, [13]

where the angle of rotation is the product of the spinning sp
v, and time, t.

The density matrix, as a function of time, is given by so
unknown propagatorU, as in

r~t! 5 U~t!r~0!. [14]

he propagator is more complicated than in Eq. [4], sinceL is
tself time-dependent. However, we can expand the propa
n a series as

U~t! 5 O
k52`

`

U ~k!~t!eikvt. [15]

Note that this is not a Fourier series, since the component
carry some time dependence. We must now solve for
dependence.
.
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Sincer(t) satisfies the Liouville–von Neumann equation,
propagator,U, must satisfy the matrix equation



t
U~t! 5 2iL ~t!U~t!. [16]

If we substitute [13] and [15] into [16], we get

O
k52`

`


t
~U ~k!~t!eikvt! 5 2i O

j522

2 O
k52`

`

L ~ j!U ~k!~t!ei~ j1k!vt.

[17]

Taking the derivative of the product on the left, and rearr
ing, gives the following equation, in whichd j0 is the Kronecke
delta and1 is the unit matrix:

O
k52`

` S 

t
U ~k!~t!Deikvt

5 2i O
k52`

` O
j522

2

~L ~j! 1 kvdj01!U ~k!~t!ei~k1j!vt. [18]

The k index on the left is arbitrary, so Eq. [18] can be rewri
as

O
k52`

` S 

t
U ~k!~t!Deikvt

5 2i O
k52`

` O
j522

2

~L ~j! 1 ~k 2 j!vd j01!U ~k2j!~t!eikvt. [19]

The solution to this equation is unique, so it is satisfied by
solutions of the following equation, for all values of k:



t
U ~k!~t! 5 2i O

j522

2

~L ~j! 1 ~k 2 j!vd j01!U ~k2j!~t!. [20]

f we solve these equations for the Floquet components o
ropagator, they can be substituted into [15] and [14], to

he density matrix as a function of time (40).
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37FLOQUET THEORY OF EXCHANGE LINESHAPES IN CP/MAS
Let us write all the propagators,U as an infinite vector,U,
as in

U~t! 5 1
·
·
·

U ~12!

U ~11!

U ~0!

U ~21!

U ~22!

·
·
·

2 . [21]

Equation [20] can then be written as



t
U~t! 5 2iLU~t!, [22]

hereL is given by

L 5 1
···

···
···

······ L ~0! 1 2v L ~11! L ~12!

··· L ~21! L ~0! 1 v L ~11!

··· L ~22! L ~21! L ~0!

··· 0 L ~22! L ~21!

··· 0 0 L ~22!

···
···

···
···

3

···
···

···
0 0 ···

L ~12! 0 ···
L ~11! L ~12! ···

L ~0! 2 v L ~11! ···
L ~21! L ~0! 2 2v ······

···
···

2 . [23]

This is a general equation. If we are including the effect
chemical exchange, then each of theL terms is composite
made up from the individual sites, as in Eq. [2] and Eq. [3].
off-diagonal elementsL (1/21) andL (1/22) are equal to the com-

osite ofL (1/21) andL (1/22) in Eq. [13]. It is important to not
that the time dependence of these matrix elements comes
the mechanical rotation, which affects the spatial parts o
interaction. However, since the exchange matrix,K , is time-
independent it contributes only toL (0). Chemical exchange th
only affects the diagonal elements ofL, which have the form o
Eq. [2]. We can therefore construct the whole matrix,L, from
the Liouvillians of the individual sites and the exchange
trix, K .

We solve Eq. [22] in the same way as any set of first-o
differential equations, to give

U~t! 5 exp~2iLt!U~0!. [24]
f

e

om
e

-

r

ote that at t5 0, no propagation has occurred. This me
hat in Eq. [21],U(0)(t) is the unit operator, and all otherU(j)(t)
are zero at t5 0. If we divide exp(2iLt) into blocks, as in Eq
[23], then any individual propagator,U( j)(t), at time t is the
j, 0) block of exp(2iLt), as given by

U ~j!~t! 5 @exp~2iLt!# j,0. [25]

We now have the description of the density matrix ev
tion. The elements of the matrix,L, are constructed from th
individual site Liouvillians, with the exchange rate contrib
ing only to the diagonal elements. These are then assem
into the form of Eq. [23], and the exponential is calcula
From this exponential, we can extract each propagator,
[25]. If we substitute these into [14] and [15], we get

r~t! 5 O
j52`

`

@exp~2iLt!# j,0e
ijvtr~0!. [26]

We detect the totalx magnetization,I x, and in Liouville
space, this detection is represented by the dot product ofI x with
he density matrix (which is a vector in Liouville space). T
etected signal in the time domain is given by

signal5 O
j52`

`

I x z @exp~2iLt!# j,0e
ijvtr~0!. [27]

e can also Fourier transform this equation to get the spec
s a function of frequency,n, as in

spectrum5 O
j52`

`

I x z F 1

i~2pn1 1 jv1 2 L!G
j,0

req. [28]

These two equations give the spectrum of a spinning s
rystal, in either the time or the frequency domain. In orde
alculate the spectrum of a powder, these expressions m
veraged over all the possible orientations of a single cry

.e., over all the Euler angles,a, b, andg. Explicit averaging
over b and g is always necessary. The average overa, the
angle around the rotor axis, can be done analytically, a
further simplifies Eqs. [27] and [28].

POWDER AVERAGING

Averaging over all orientations is simple, but the strai
forward method is very inefficient. Since this process is
important in magnetic resonance, several good algorithms49–
53) have been developed. These methods are design
average over the two Euler anglesb andg. Averaging overa,
the angle around the rotor axis, is quite simple, since
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38 HAZENDONK ET AL.
equivalent to a phase offset in the sample spinning.
average also brings an important simplification (54).

To show how to average around the rotor axis, we mak
a dependence explicit. This rotation is simply a phase effec
that equation [13] becomes

L ~t! 5 O
j522

2

L ~j!eijvteija. [29]

When we carry this through the derivation, each of theL terms
in Eq. [23] is modified by a phase factor as in

L ~j! 3 L ~j!eija. [30]

This is a unitary transformation of the fullL matrix, and it is
described by a diagonal matrix,W. Because it is unitary,
propagates through any function ofL, f(L), as in

f~W21LW! 5 W21f~L!W. [31]

Therefore, the ( j, 0) blocks of the matrices in Eq. [27] or [
are multiplied by eija when the sample is rotated through
anglea about the rotor axis.

The powder average over the anglea just averages the sign
or the spectrum over all values of the angle. This means th
Eqs. [27] and [28], all the terms with jÞ 0 will average to zero
The equations for the time-domain signal, or the freque
domain spectrum for a powder sample, then become pa
larly simple. Equation [27] becomes Eq. [32], and Eq.
becomes Eq. [33]:

signal5 I x z @exp~2iLt!#0,0r~0! [32]

spectrum5 F 1

i~2pn1 1 jv1 2 L!G
0,0

req. [33]

These are very concise and neat formulae for the observ
in an MAS experiment. The whole matrix,L, must still be
constructed, truncated to the appropriate number of Flo
blocks, and either its exponential or its inverse must be c
lated. In practice, however, the full matrixL does not have t
be calculated and stored as a whole, so the program
considerations are eased. Each Floquet block has the d
sion of the size of the density matrix, since it is a ma
applied to the density matrix. However, due to the pow
averaging, only the central (j5 0) block of the inverse (ave
aged over the other angles,b andg) is needed to calculate t
spectrum.

SPECTRUM CALCULATION

Equation [33] is what we need to calculate the spect
However, using this in a numerically efficient manner requ
is

he
so

]

in

y-
u-
]

les

et
u-

ng
en-

r

.
s

some thought. Inverting the matrix for each frequency,n, in the
spectrum is clearly a waste of computer time. The stan
method, usually attributed to Gordon and McGinnis (46), in-
volves a single diagonalization ofL. Tracing out the spectru
as a function ofn is then quite efficient. Using standa
Householder methods, the computational effort to diagon
a matrix scales as the cube of the size of the matrix. Fo
number of Floquet blocks needed in an MAS spectrum,
scaling law becomes prohibitive very quickly.

As we noted before, the matrix to be diagonalized h
pentadiagonal structure, and so is inherently sparse. Fu
more, even though diagonalization is computationally in
sive, reduction of the matrix to a tridiagonal form can be d
relatively quickly. The spectrum can then be calculated fro
tridiagonal version ofL, using an LU method to solve t
system of linear equations associated with Eq. [33]. The L
zos algorithm (19) provides an efficient way of calculating t
tridiagonal form of a large, sparse matrix.

SCALING OF THE CALCULATION

The scaling of Lanczos was compared to Householde
increasing the Floquet dimension,NF, of a sample system. T
spectral range was kept constant; consequently the roto
quency was inverse proportionately decreased. The loga
of the CPU time was plotted (Fig. 1) as a function of
logarithm of the matrix order,O, which in the case was 2NF.
For Householder implementation, the slope of the line was
which is close to the asymptotic limit 3. The Lanczos met
had a slope of 2.1; however, it had significant overhead d
the spectrum evaluation. As in the previous study with liq

FIG. 1. A comparison between Lanczos and Householder calculatio
spinning sideband spectra, showing the scaling of the CPU time with re
to the matrix order. The log10(CPU) is plotted as a function of log10(Order).
The slope corresponding to the Householder data (open circles) was 3.2
that of the Lanczos data (filled circles) was 2.1.
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39FLOQUET THEORY OF EXCHANGE LINESHAPES IN CP/MAS
(24), saturation behavior was observed for both increased
broadening or with chemical exchange.

The CP/MAS spectra of DMS and [13C2]DMS were simu-
lated using the EisXSS and LanXSS programs. These
written in FORTRAN77, where EisXSS uses Householder
LanXSS uses Lanczos tridiagonalization. Computations
performed on an SGI Octane Dual R10000 at 250 M
Programs were compiled with a MIPS 7.21 FORTRAN c
piler, with 64-bit word size, running in an Irix 6.5.2 enviro
ment.

All simulated spectra contained 4096 points, with
8000-Hz spectral width. Powder averages, using an app
similar to that of Aldermanet al. (53), were done over 95

oints, assuming no symmetry. The sphere was divided
uadrants where one polar angleu ranged between 0 and 18

and the remaining polar anglef varied from 0 to 90°. Th
quadrant was divided into 2n equally spaced bands paralle
the equator. Each band is divided into curvilinear squares
that squares from different bands subtend approximatel
same solid angle. The same pattern is repeated in reverse
for the bottom half of the quadrant. The actual angles
correspond to the center of these squares. The weight for
orientation is equal to the solid angle subtended by the
ciated square. The linewidths were set to 13 and 75 H
DMS and [13C2]DMS, respectively. Rotor speeds ranged fr
540 to 580 Hz for the natural abundance sample, and from
to 400 Hz for the labeled material. The number of Floq
blocks was 40 for all simulations.

The DMS spectra were simulated as a one-spin two
mutual exchange, and the [13C2]DMS spectra were simulate
as a two-site two-spin nonmutual exchange. Both calcula
required matrices of the same size. The12C,13C isotopomer i
a one-spin two-site nonmutual exchange problem, wherea
13C,13C case is a two-spin mutual problem. Spectra were-
ulated (Figs. 3 and 5) for a variety of parameters and comp
visually with the experimental spectra (Figs. 2 and 4). F
values were as follows. The principal components of the ch
ical shift tensor were set at 18.6, 18.6, and237.3 ppm for both
sites; their Euler angles were (0, 0, 0) and (0, 108°, 0).
carbon–carbon internuclear distance of 29 nm, compared
nm in a crystal structure (55), gave a slightly better fit. Ex
change rates were 50, 800, 1700, and 5500 s21 for temperature
of 295, 333, 343, and 348 K, respectively. Experimental
simulated spectra were compared visually. The EisXSS c
lations took 7 min while the LanXSS calculations took 20 m

CONCLUSIONS

Floquet theory provides an excellent general way of des
ing the effect of dynamics on an MAS NMR spectrum. T
small time-dependent problem is expanded in a Fourier
series to become a much larger, time-independent pro
This time-independent problem can then be solved using
established methods from high-resolution NMR system.
numerical disadvantages of increasing the size of the sy
ne
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are substantially avoided by exploiting the inherent sparsi
the Floquet matrices. The Lanczos method for tridiagonal
a matrix (as opposed to the standard Householder techn
shows much better scaling (between linear and quadrat
the size of the matrix increases.

The method was tested on CP/MAS spectra of doubly13C-
labeled dimethyl sulfone. In this case, there were both CSA
dipolar interactions, as well as the exchange between the
Experimental spectra showed approximately 10 spinning
bands. These spectra were simulated using both Lanczo
Householder methods. The Lanczos calculation took app
mately 20 min on a modern UNIX workstation, and the Hou
holder calculation took about 7 min.

These results establish that the method will work on m
complex systems: quadrupolar nuclei, more spins, more
actions. The scaling of the Lanczos methods ensures th
calculations will remain feasible for these important la
systems.

EXPERIMENTAL

Unlabeled dimethyl sulfone was purchased from Ald
Chemicals and used without further purification. The kn
(56), doubly 13C-labeled dimethyl sulfone (1) was prepare
from [13C]iodomethane by reaction with sodium sulfide-
cording to the procedure of Tarbell and Weaver (57). The
resulting presumed dimethyl sulfide was distilled and oxid

FIG. 2. 13C CP/MAS spectra of unlabeled dimethyl sulfone for a serie
emperatures from 295 to 348 K. The spectra were taken at 50 MHz, w
otor frequency of between 540 and 580 Hz controlled to within 2 to 5
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40 HAZENDONK ET AL.
without further purification using potassium permanganate
lowing the procedure used by Malewski and Mitzinger (58) for

reparation of [2H6]dimethyl sulfone.

reparation of [13C2]Dimethyl Sulfone

A mixture of [13C]iodomethane (5 g, 35 mmol) and sodi
sulfide nonahydrate (4.6 g, 19 mmol) was heated at reflux
stirring for 4 h, with an attached cold-finger condenser
taining an ice-water mixture. The mixture was cooled
distilled through a short path into a fresh flask which
cooled in ice, and to which the cold-finger condenser
attached. The cooled distillate was treated with potas
permanganate (11.5 g) and water (25 mL). After the in
exothermic reaction had subsided, the mixture was heat
reflux in an oil bath (90°C bath temperature) for 5 h while
cooling of the cold-finger trap was maintained. The mix
was cooled and stirred at room temperature overnight.
water was removed by distillation, and the solid residue
dried briefly in vacuo.The product was sublimed from th

lack material giving white needles (50 mg, 500mmol, 3%),
mp 106–107°C, 107–108°C for authentic, unlabeled sa
(Aldrich); 1H NMR (CDCl3, 200 MHz)d 2.96 (d,1J13C–H 138
Hz with sidebands due to the magnetic inequivalence o
two carbons);13C NMR (CDCl3, 50 MHz) d 42.67 (enriche
singlet). A detailed analysis of the proton spectrum (Fig. 2
an AA9X3X93 spin system revealed1J13C–H 5 1137.6 Hz
3J13C–H 5 10.8 Hz,2J13C–13C 5 69.5 Hz, and4JH–H 5 10.9 Hz.

FIG. 3. Simulations of the13C CP/MAS spectra of unlabeled dimet
sulfone for a series of temperatures from 295 to 348 K, using EisXSS. Sp
parameters are given in the text.
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The CP/MAS spectra were acquired on a Bruker DSX
spectrometer equipped with a wide-bore magnet of 4.
leading to a proton frequency of 200 MHz and a13C frequency
of 50 MHz. The probe used was a standard Bruker 4
double-tuned MAS probe. This probe requires the sample
packed in a zirconia cylinder of 4 mm diameter and 18
length. The sample container is closed by a cap with turb
like incisions at the outer rim. For magic-angle spinning,
sample is cushioned on a gas stream (bearing) to reduc
tion, while a second gas stream blown at an angle ove
incisions in the cap drives the rotation. This system had
designed for fast spinning (2 to 16 kHz) and in the stan
setup, it was impossible to obtain stable low spinning r
(180 to 800 Hz). Boron nitrate caps which are recomme
for variable-temperature studies were used and the tur
were shaved off with a razor blade such that a fairly sm
cone was left. This reduced the driving force sufficiently
the sample could be spun between 180 and 2 kHz.

Temperature control was achieved with a Bruker BVT-3
unit. This unit regulates the current through a heater in
bearing gas using a copper/constantan thermal coupler
temperature sensor. The sensor is located close to the s
also in the bearing gas stream.

The proton 90° pulse length was 5.5 ms, the contact
was 2 ms, and the repetition time was 4 s. The numb

FIG. 4. 13C CP/MAS spectra of doubly13C-labeled dimethyl sulfone for
eries of temperatures from 295 to 348 K. The spectra were taken at 50
ith a rotor frequency of between 320 and 400 Hz controlled to within 2
z.

ral
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transients varied with each spectrum between 15,000 an
in order to obtain similar signal-to-noise ratios (Figs. 3 and
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